

Waste Management Indian Scenario

Authors

Dr. Rajaram Vasudevan Techno Engineering, Chicago, IL, USA Mr. George Mathew W2ES USA Inc, Cochin, India

×

Practical Issues with waste management in India

- Unsorted waste Mixed waste of bio degradable and nonbiodegradable
- Low calorific value
- High moisture content
- Presence of hazardous waste
- Lack of awareness
- Unplanned growth and development of cities
- Land Availability

Identifying appropriate technology for waste management

At Source treatment - Bio-degradable waste & Sewage Treatment

Bio-Methanation Plant

Unsorted & Non-biodegradable Waste Treatment

• W2E Gasification Plant

'At Source' treatment of Biodegradable Waste & Sewage

Appropriate Technologies for sewage & wet waste

Typical Aerobic treatment systems follow the European model where :

- Low **ambient temperatures** the digesters need to be heated for proper functioning.
- The availability of oxygen is more because the solubility of oxygen is more at lower temperatures

In tropical India the situation is reversed.

- High ambient temperatures avoids need for heated digestors.
- High temperatures result in low soluble Oxygen availability.

Anaerobic Treatment of sewage is recommended for Tropical India

Biodegradable Waste

Bio-Methanation uses bio-degradable waste for biogas generation

- Canteen Waste
- Combined Sewage and Canteen Waste
- Poultry Waste
- Food Processing Waste
- Slaughterhouse Waste

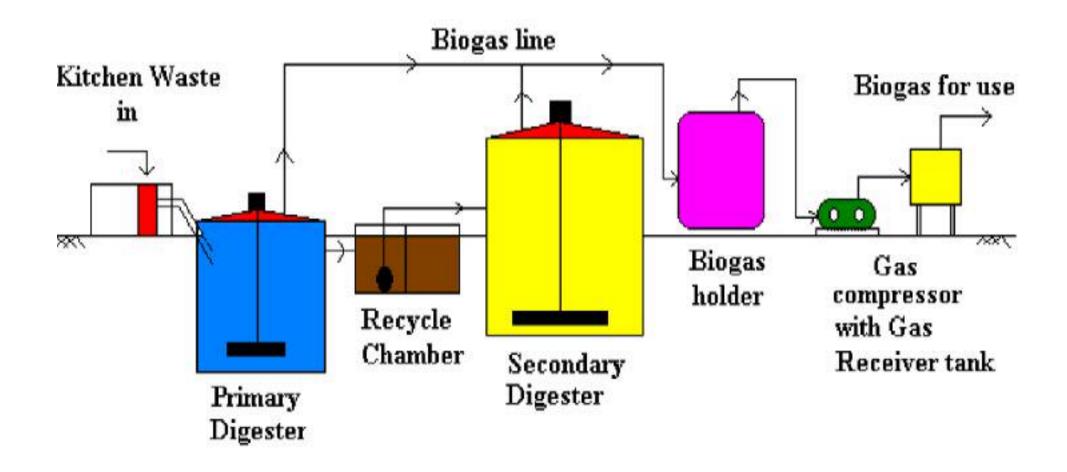
- Leather Shavings Waste
- Starch Effluents
- Animal Droppings
- Fruit & Flower Market
- Sewage Sludge from STP

Problems in waste treatment by Aerobic & Vermi Composting

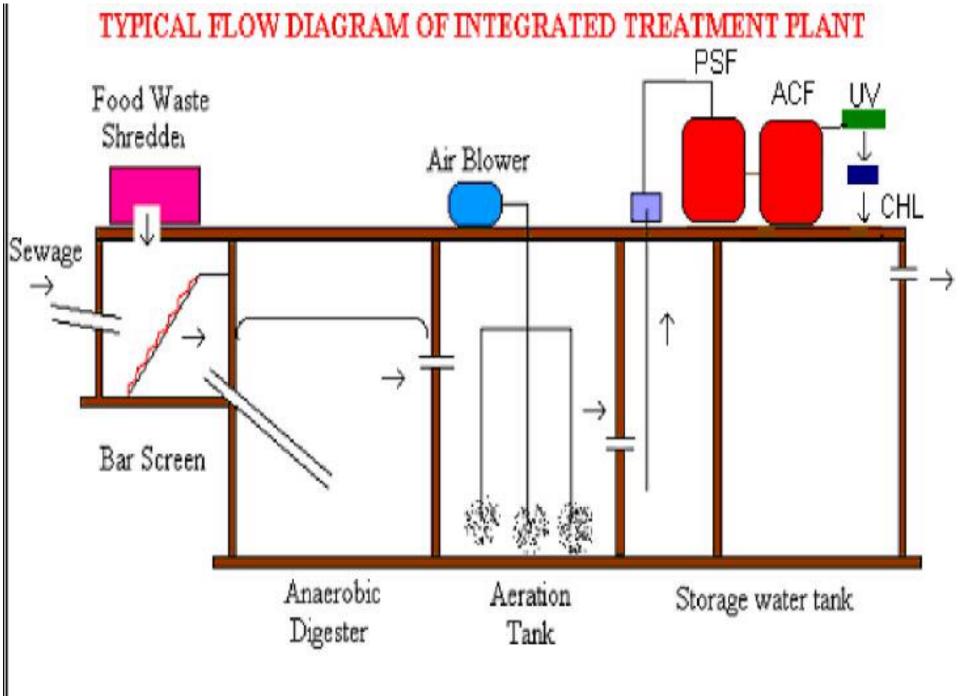
- Nuisance from foul smell
- Uncovered compost bins attract stray animals & Insects

Composting is suitable for cold countries. For countries like India, it adds to global warming.

The Integrated Approach



'At Source' Integrated Treatment Plant can handle Kitchen waste and Sewage for biogas generation.


- Sewage & garbage flows from population centers to designated 'At source' treatment sites.
- Cost Savings by Reduction in digestor size from combined treatment
- Very low loading rates for sewage treatment.
- Efficient Energy Mangement by combined Energy recovery & utilization

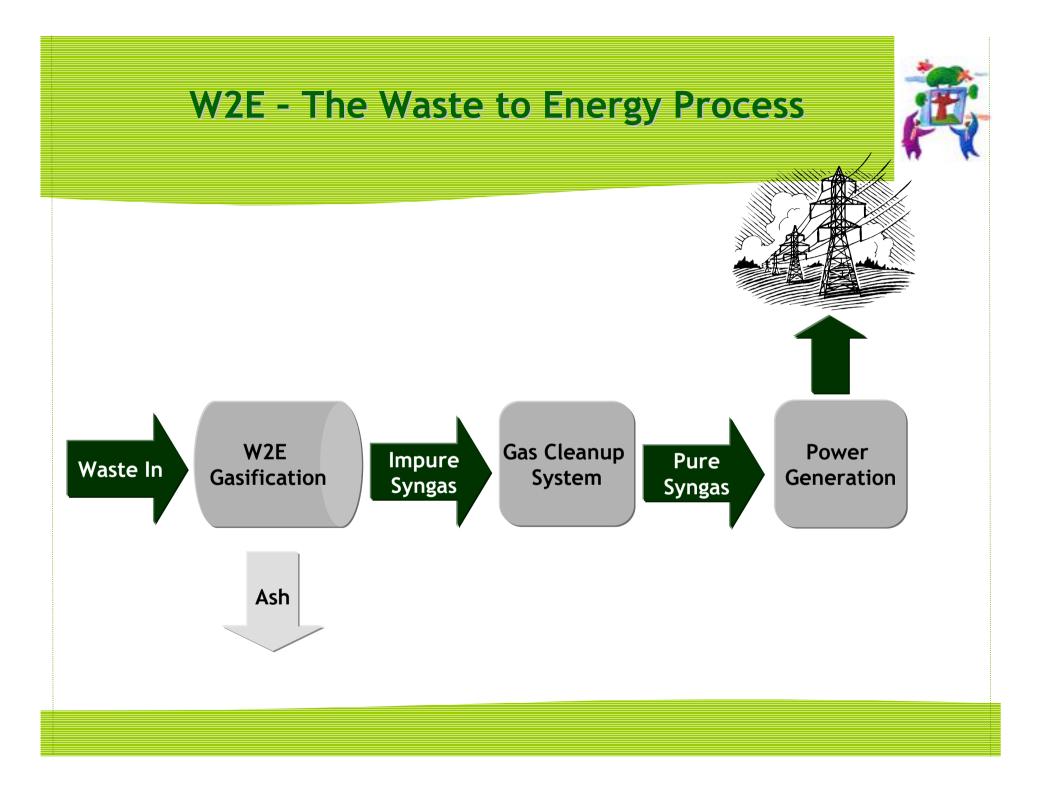
'At Source' Treatment- Advantages

- 'Polluter to pay'
- Reduced transportation cost.
- Reduced cost of laying sewage line & pumping
- Less volume makes Segregation easier
- Biogas Generated can be easily utilized
- Treated Waste can be used locally as fertilized & water for gardening

Courtesy : Mailhem Engineers, Pune

Courtesy : Mailhem Engineers, Pune

What happens to t<u>hese & unsorted</u> <u>waste?</u>



- **7** Biomedical or Hazardous waste
- **7** Plastic materials
- **7** Used tires
- ↗ Wood & Wet or Dry Agro waste
- **7** Aluminum scraps
- **7** Paints ,sludge ,oil
- **7** Unsorted Waste .

Overview - W2E Gasification

- We go to the waste bringing waste-to-energy plants closer to the source
- Distributed 25 to 100 Ton/day waste-to-energy plants
- The waste producer takes responsibility and sees immediate benefits in power generated or energy produced.
- Small, simple and inexpensive to manufacture, install and operate
- **7** Low gas emissions easy to comply with regulations
- Partners from public, private end users or investors

Waste Treatment Cycle

Garbage collection bins/bags

Waste Source

Waste to Energy Plant

What is Gasification?

- Convert any waste through partial oxidation with air into SynGas ,A clean-burning fuel - a mixture of combustible gases (CO, H2, CO2, H2O, N2 and some HC)
- Not Incineration or mass burn
- Easier and cheaper to clean off-gas or SynGas
- Gas volumes are very low compared to incineration, makes gas cleanup easier & less capital requirement
- SynGas allows multiple use for energy easily piped for combustion or other thermal process
- Practical and economical even at small scale of operation

Waste Utilization

- Minimum 1000 BTU/lb (555 Kcal/Kg) of Calorific Value adjust by mixing (eg. sewage 3500 BTU/lb- tires 21018 BTU/lb)
- 7 60 to 70% of energy value carried with SynGas
- Energy depends on system used for power generation typically 25 Ton per Day gives 1MW power

Environmental Benefits Derived From W2e Project

- Alternative energy produced from local waste to increase energy security
- Beneficial use of waste avoids necessity of long distance transport to landfill thereby saving cost and energy
- Significant reduction in emission of greenhouse gases and particulates per MW generated
- Generates carbon credits

Best Solution for PVC & Plastics

- All PVC react in the gasifier with steam and oxygen to produce CO, H2, CO2, and HCl.
- Unlike incineration, gasification does not produce free chorine radicals which is primary culprit in the formation of dioxins and furans.
- Gasification is the only safe way to use PVC and other plastics for generating alternative energy.

Other Projects by W2E

.

.

•

.

Idaho Project

- Gasify swithgrass (25%moisture) to produce 1MW electricity.
- Cost of switchgrass \$40/ton, electricity \$60/MW
- 1 ton switchgrass/hour yield 1 MW power
- Business plan based on \$20 differential between cost of raw material and selling price of electricity.

Korea Project

- Waste to synfuel plant located in industrial complex
- Plant capacity 100t/d based on industrial wastes (foam, paper, cloth,etc)
- Synfuel delivered to ink manufacturer (25T/H)
- Project economics based on \$100/ton tipping fees for industrial wastes and \$20/ton of steam
- Project payback 1-2 year
- Center for Neighborhood Technologies
 - Identify host site for fuel use in Chicago industrial corridor
 - Use wood debris from construction waste as feedstok (tipping fees = \$40=\$50/ton)
 - Convert wood waste into sungas to replace natural gas in burners for cooking or for steam
 - Incentive is to creat new jobs and new green business in urban ssettings.
 - Projected Payback 2-3 years.

Chevron Ventures Hydrogen Program

- Wood waste to hydrogen
- Distributed generation at hydrogen fueling stations
- 1T/H wood gasification adequate for 200cars/day
- Wood waste most suited for H2

State University of NY at Cobblerskill

- Gasification of agriculture and animal wastes to produce syngas.
- Portion fo syngas used for heating and portion for power gneration.
- Installed capacity approximately 200kw
- Financial incentive form NY Power Authority if payback is less than 10 years.

Port of Detroit

- Install 1 MW power plant based on wood waste and used tires.
- Port of Detroit as host site and plant operator.
- Financed through grants or through bond issue.
- US CAR :
 - Convert auto shredder residue into steam and power (with syngas as intermediate step)
 - Power and steam used for on-site for auto shredding.
 - Projected paybacck less than 3 years.

PROJECT FACTS : ONGOING PROJECT IN KERALA

Name of Project	ochin Waste 2 Energ	y Project
Name of Company	Cochin Waste 2 Energ	y Pvt Ltd
Promoted By	Cochin Chamber of Co	ommerce
Type of Process	BESI W2E Gasification	n Technology(Patent Pending)
Capacity	5 tons/day	
Location	Villington Island, Co	chin
Land Area	Acre	
Type of Waste	e-waste,Biomedical wa ood waste, Wood was Plastics, PVCs, Indust MSW without sorting	ite, used tires rial effluent Sludge, Sewage Treatment sludge,
	Exceptions :Radioactiv	re Waste & Batteries
Power Generation	Mega Watt per hour	
Solid Waste generated from Plant	Recovered sterilized n	netals for recycle. Vitrified glass. Inert Ash
Revenue Stream	Tipping fee. Sale of Po	ower generated. Residue. Carbon Credits
Collection Mechanism	Through specially des norms	igned enclosed refuse trucks meeting international
Waste Stream Analysis	School of Environmen	tal Studies, CUSAT
Third Party monitoring	CB & School of Envi	ronmental Studies, CUSAT